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ABSTRACT 

The use of external libraries in today’s software projects allow developers to take advantage of features provided by 
such APIs without having to reinvent the wheel. However, APIs have also introduced new challenges to the Software 
Engineering community (e.g., API incompatibilities, software vulnerabilities, and license violations) that extend 
beyond traditional project boundaries and often involve different software artifacts. One potential solution to these 
challenges is to provide a technology-independent representation of software dependency semantics and its integration 
with knowledge from other software artifacts.  

In our research, we take advantage of the Semantic Web and its technology stack to establish a unified knowledge 
representation of build and dependency repositories. Given this knowledge base, we can now extend and integrate 
other (heterogeneous) resources to allow for a flexible and comprehensive global impact analysis approach. To 
illustrate the applicability of our Semantic Web enabled modeling approach, we discuss two different applications. 
These applications illustrate how our modeling approach cannot only integrate and reuse knowledge from dependency 
management systems and other software artifacts, but also takes advantage of inference services provided by the 
Semantic Web to support novel software analytics services across artifact and project boundaries.   
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1 Introduction 
Traditional software development processes, focus on closed architectures and platform-dependent software, restricted 
potential code reuse across project, and organizational boundaries. With the introduction of the Internet, these 
boundaries have been removed allowing for global access, online collaboration, information sharing, and 
internationalization of the software industry [1]. Software development and maintenance tasks can now be shared 
amongst team members working across and outside organizational boundaries. Code reuse through resources such as 
software libraries, components, services, design patterns, and frameworks published on the Internet have become an 
essential part of today’s development practice [2]. Now, Software developers can take advantage of features provided 
by external libraries through their Application Programming Interfaces (APIs) without having to reinvent the wheel 
[3], [4].  

Automated dependency management environments have been introduced to simplify and automate the integration, 
management, and reuse of external libraries during development. Build systems and dependency management tools 
automatically download and manage all necessary dependent components (including transitive dependencies), update 
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dependencies to their latest versions, and perform dependency mediation (conflict resolution) when multiple versions 
of a dependency are encountered. Among the most widely used open-source build (dependency) management 
environments are Maven Central1, npm2, and RubyGems3.  

Existing research has shown how mining knowledge captured in build repositories can be used to enhance software 
tasks such as identifying inconsistencies in license compliance  [5], predicting build changes [6], [7], identifying build 
clones [8], and automatic library recommendation and migration [2].  

While current software analysis and dependency approaches perform well in analyzing individual project contexts, 
the collaborative nature of today’s software development requires new types of analysis and knowledge modeling 
approaches to address global software engineering challenges. Such analysis and modeling techniques must be able 
to capture not only intra project dependencies but also inter project dependencies across project boundaries as well as 
within complete software ecosystems. Therefore, a technology-independent representation of software dependency 
semantics is needed that can provide the ability to seamlessly integrate knowledge from other software artifacts and 
support dependency analysis that can reason upon knowledge that is explicit and implicit captured in such a knowledge 
base. 

Knowledge graphs are recognized by many industries as an efficient approach to data governance and data integration. 
A central promise of knowledge graphs is that heterogeneous data, i.e., data from unstructured data sources up to 
highly structured data, can be harmonized and linked so that the data of higher quality can be used for subsequent 
tasks such as machine learning. While many domains (e.g., enterprises [29]) have started to make knowledge graphs 
an integrated part of their solution space, the software engineering community has yet to embrace this move.  

While there are many works on creating software analytics tools or services to support software analysis tasks, their 
applicability is often limited for several reasons; First, these tools have remained information silos by relying on their 
own proprietary data collection and data models. Whilst these models work well for supporting tool specific analytics 
services, they limit their ability to share, reuse, and integrate data and analysis results with other software analytics 
tools and knowledge resources. Second, the underlying knowledge models used by current analysis approaches lack 
support for a seamless integration of new knowledge resources or the ability to deal with incomplete data. Thirdly, 
their analysis support is often limited by the underlying knowledge model and provide limited flexibility in terms of 
supporting user specific analysis needs. 

In our research, we take advantage of the Semantic Web (SW) and its technology stack (e.g., ontologies, Linked Data, 
reasoning services) to establish a unified knowledge graph representation of build and dependency repositories. 
Based on this knowledge graph, we can now extend and integrate this knowledge with other (heterogeneous) resources 
to allow for a flexible and comprehensive global impact analysis approach that provides library producers as well 
as consumers with new insights to guide them during the evolution of their libraries. 

The research in this paper is a continuation of our previous work on semantic modeling in which we introduced a 
Security Vulnerability Analysis Framework (SV-AF) that establishes traceability links between the National 
Vulnerability Database (NVD)4, Maven dependency repository, and the source code of projects [9], [10]. In this paper, 
we describe in detail our design rational and the process we applied to create knowledge graph representation of build 
and dependency semantics.  

Our research is significant for several reasons:  

1) We introduce a formal Software Build System Ontology (SBSON), which captures concepts and properties 
for software build and dependency management systems that allows for a standardized representation of 
the semantics of these systems. This unified representation allows for the introduction of new types of 
dependency analysis at the level of individual and across different build management systems.  

 
1 https://search.maven.org/ 
2 https://www.npmjs.com/ 
3 https://rubygems.org/ 
4 https://nvd.nist.gov/ 
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2) We illustrate how SBSON can be further integrated with other knowledge resources, by taking advantage of 
the Semantic Web and its ability to model and seamless integrate heterogeneous knowledge resources. 

3) We describe several key design decisions we applied to enhance the ontology design and illustrate how our 
approach takes advantage of reasoning services provided by the Semantic Web to further enrich our 
knowledge representation. 

4) We demonstrate how our integrated knowledge modeling approach can support novel types of knowledge 
driven software analytics services that are flexible (user defined queries) and take advantage of SW 
inference services. 

The remainder of the paper is organized as follows: Section 2 provides an illustrative example to motivate the 
significance of this work. Section 3 provides background related to dependency management and semantic web 
technologies. Section 4 presents the core of this paper, SBSON. Section 5 demonstrates two different applications of 
SBSON. Related work and potential threats to validity are discussed in Sections 6 and 7, respectively. Finally, Section 
8 offers concluding remarks and outlines future research directions. 

2 Motivation 
Although the reuse of third-party libraries provides developers with productivity gains by not having to re-implement 
already existing functionality, this form of code reuse also introduces new technical and organizational challenges 
[11]. Some of these challenges identified and discussed in existing research are: 

 selecting the most relevant library among several alternatives [12], [13], [55], 
 how to use features provided by these libraries [13], [14], [56] 
 cost of migrating to a new library [15], [16], 
 maintenance costs due to breaking changes [17]–[19], 
 impact of security vulnerabilities and bugs [20], [21], 
 incompatible software licenses [5], [22], and 
 unmaintained or outdated libraries [20], [23], {57] 

To address these challenges, existing approaches analyze knowledge found within repositories such as dependency 
management repositories (e.g., Maven Central, npm), source code repositories (e.g., GitHub5), vulnerability databases 
(e.g., NVD), and Q&A forums (e.g., StackOverflow6). However, as mentioned in the introduction, most of these 
approaches treat these repositories as information silos, caused by: (a) a lack of standardized knowledge 
representations across repositories, b.) analysis pipelines that are typically proprietary to the specific knowledge 
resource (repository), and (c) resources and analysis results that are not easily sharable among knowledge resources. 

We argue that most software analytics tools have remained in information and application silos due to their 
lack of Findability, Accessibility, Interoperability and Reusability (FAIR) of data and analysis results. These 
information and application silos make it (1) extremely costly and difficult to extract data and (2) use it for 
anything other than its original purpose.  

The first problem stems from the governance of data. While data silo owners can maintain full control over their data 
and establish their own governance processes, data silos contradict the FAIR data principles, limiting the ability to 
identify and find individual facts and data elements across resource boundaries. Data should be accessible and 
interpretable by both humans and machines and be stored in trusted repositories. Such trusted repositories should 
support data consistency checking and provide global access, with data and analysis results being identifiable and 
accessible across tool, project, and knowledge resource boundaries. Key in transforming such data silo into 
information hubs is a formal, accessible, shared knowledge representation language.  

The second problem follows the lack of support for the FAIR data principle, with data silos that cannot efficiently 
handle the full range of contexts that are potentially available, since there is typically one data silo per application. 

 
5 https://github.com/ 
6 https://stackoverflow.com/ 
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Such application thinking, results in software applications and associated data structures that are optimized for a 
specific purpose at a certain point in time. Efficient data exchange is rarely a primary concern therefore proprietary 
data models are used. Instead of placing data and larger analytics workflows at the center of their system design, 
applications often continue to be lined up and optimized separately. One must consider a more global perspective, 
allowing for software analytics approaches to go beyond application specific thinking, and support the inference of 
new knowledge across resource boundaries. 

The following scenarios illustrate how such an integrated knowledge modeling approach allows for the integration 
of heterogenous knowledge and the support of new, user defined types of knowledge-based software analytics 
services.  

Scenario #1: Support for bi-directional dependency analysis. Current build tools provide support for automatic 
dependency management; a project only needs to specify the third-party libraries it directly depends on, and the build 
tool will automatically include all required transitive dependent components. However, as shown in Figure 1(a), such 
dependency analysis only supports unidirectional dependencies. While unidirectional dependency models work well 
for managing build dependencies at the individual projects level, they lack the necessary expressiveness to let users 
take full advantage of the stored dependency information. 

For example, Maven’s native support for impact analysis allows a developer to identify all components a particular 
project depends on. As illustrated in Fig. 1(a), a component C might depend on components D and E. However, 
Maven’s dependency model makes it impossible for an API (library) producer to identify which other projects 
(clients) depend (either directly or indirectly) on his API. Such additional dependency information is useful when 
a developer wants to determine the potential impact of a change to his library on other libraries/projects within the 
current build management ecosystem. Furthermore, given that each dependency system relies on its own dependency 
management ecosystem, these systems do not support dependency analysis across different dependency 
management ecosystems. 

Using SW (and its supporting technology stack), we mine and model dependencies across projects and even build 
management ecosystems to create a “global” bi-directional dependency graph (Figure 1(b)). In this enriched bi-
directional knowledge model, library producers can now identify all components (consumers) which depend 
(directly or indirectly) on their libraries. For example, the developer (producer) of component C can now identify 
that components A, F, and G (clients) can potentially be impacted by a change to C. 
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Figure 1: Overview of motivating scenario #1 

 
Scenario #2: Supporting cross-artifact analysis. Many software analysis tasks extend beyond the source code and 
involve other software artifacts. For example, analysis tasks such as license violation detection and vulnerability 
impact analysis will require access to source code, license files, and vulnerability databases. While existing approaches 
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and tools support such types of analysis using project dependencies (e.g., VersionEye7, SourceClear8, OWASP-DC9), 
their current analysis support remains limited by their knowledge representation (e.g., support only for unidirectional 
dependencies) as well as a lack of extensibility of their knowledge model and therefore a lack of seamless integration 
of other (new) knowledge resources in their analysis. 

In contrast, our approach takes advantage of the SW to establish traceability through a global project knowledge 
graph. This global dependency graph allows us to a.) integrate concepts and facts from other software knowledge 
repositories, while b.) supporting the inference of new knowledge, and c.) allowing analysis results to become an 
integrated part of the knowledge model.  

For example, in Figure 2 a traceability link is established between project E instances in the vulnerability and 
dependency ontology. Using this traceability link, we can now infer that projects C, A, F, and G can potentially be 
affected by a vulnerable in project E, due to their (transitive) dependency on project E. In addition, having access to 
the license ontology, we can now identify that project A may introduce a license violation. For example, given the 
transitive dependency between project A and D, and project D having a license which is conflicting with the license 
in A. 

In addition, these two scenarios illustrate how our approach takes advantage of the Open World Assumption10 

(OWA) which must hold when modeling and analyzing these software engineering resources to be able to deal safely 
with incomplete data. Meaning, the lack of information cannot be used to infer further knowledge, unlike most existing 
source code analysis approaches which are based on the closed world assumption (CWA) [24]. For example, in Figure 
2, we do not have any established traceability link between project F’s instance in the dependency model and the 
vulnerability model. This does not mean project F has no security vulnerabilities; we cannot infer that fact at the 
moment. Using the SW, we can safely deal with such incomplete data, support incremental knowledge population and 
take advantage of its inference services [25], [26]. 

 

Figure 2: Motivating scenario #2 - Integrating build information and knowledge from heterogeneous software repositories 

3 Background 

3.1 Build Systems and Dependency Management 
Build systems transform the source code of a software system into deliverables. Despite their different design 
paradigms [27], all build systems capture the build process – a process by which software can be incrementally rebuilt, 
allowing developers to focus on making source code changes rather than having to worry about managing a project’s 

 
7 https://www.versioneye.com/  
8 https://www.sourceclear.com/  
9 https://jeremylong.github.io/DependencyCheck/  
10 https://en.wikipedia.org/wiki/Open-world_assumption  
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build dependencies. Dependency Management is one of the critical features of existing build automation tools. Build 
automation tools use project dependency definitions captured in specialized build repositories (e.g., Maven Central, 
npm, PyPi11, and RubyGems) to provide dependency management features such as transitive dependencies and 
dependency mediation (conflict resolution).  

Transitive dependencies: If A depends on B, which in turn depends on C, then C is considered to be transitively 
dependent on A. Part of Maven’s appeal is that it can manage these transitive dependencies and shield developers 
from having to keep track of all build dependencies required to compile and run an application [28]. 

Dependency mediation: In Java, the JVM is unable to differentiate between multiple versions of an API and will 
always choose the first occurrence of an API in a project’s class-path, independent of its version. In cases where 
multiple versions of a dependency are encountered, Maven attempts to resolve such version conflicts by using only 
the version of the dependency closest to the root of the dependency tree. However, his type of conflict mediation can 
lead to potential runtime failures, which are not identified during the build or compilation process. 

3.2 The Semantic Web in a Nutshell 
Berners-Lee et al. define the Semantic Web as “an extension of the Web, in which information is given well-defined 
meaning, enabling computers and people to work in cooperation” [29]. In a Semantic Web, data can be processed by 
computers as well as by humans, including inferring new relationships among pieces of data. For machines to 
understand and reason about knowledge, the knowledge needs to be represented in a well-defined, machine-readable 
language.  

The Semantic Web makes use of a set of technologies, frameworks, and notations defined by the World Wide Web 
Consortium (W3C) to be able to provide formal descriptions of concepts, terms, and relationships within a given 
knowledge domain. The Semantic Web is built around the central concept known as Ontology. Ontologies provide a 
formal and explicit way to specify concepts and relationships in a domain of discourse. They are a standardized 
platform for sharing vocabulary in addition to knowledge to automate access and ease of use. Classes (and subclasses) 
are used to model concepts in ontologies, with properties modeling the attributes of such concepts.  

Ontologies in Software Engineering. Representing software in terms of knowledge rather than data, ontologies 
provide a better support for representing the semantics of software [29] compared to relational databases and other 
data representations based on the CWA, as sharing and extending of schemata are not natively supported. In contrast, 
Semantic Web knowledge models are extensible, allowing the addition of new knowledge without affecting existing 
knowledge. Unlike relational databases or other data representation based on the CWA, extending an existing schema 
becomes a time-consuming operation, often affecting a complete database (e.g., changing a foreign key index type 
might require dropping and recreating several other dependent database indices). Additional benefits identified by 
[30] are the Semantic Web which makes relations and their meaning explicit. Relational databases lack a consistent 
method for obtaining the semantics of a relation and therefore a query can join any two table columns if their datatypes 
match. There is no interpretation of the meaning of the relation performed. As a result, relational databases are not 
machine-interpretable and the inference of knowledge (explicit or implicit) requires human interaction. Also, linking 
data is a vital property of the Semantic Web, with resources identified by their Uniform Resource Identifier (URI). 
These URIs, allow for consistent identification of the same resource across various knowledge resources. This 
contrasts with relational databases where resources are local and not universal, therefore restricting the ability of 
relational databases to establish resource links outside their local schema.  

 
11 https://pypi.org/  
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4 SBSON – A Unified Ontology-based Modeling Approach for Software 
Build and Dependency Repositories 

4.1 Overview 
Our approach is based on a semantic knowledge model using ontologies. Ontologies not only allows us to provide a 
standardized knowledge representation for software build and dependency knowledge, but also to integrate this 
knowledge with other software artifacts to support novel knowledge-driven dependency analysis services.   

The proposed model adheres to the following design criteria proposed by [31], [32]: 

 Unambiguous Semantics. The primary motivation for using ontologies over other modeling approaches is 
to enrich information with a formal semantic representation. The absence of clear semantics may lead 
otherwise to diverging interpretations of intended meaning. Formalism, through defining concepts with 
logical axioms, is the means to this end. To the best of our knowledge, there exists currently no semantic 
vocabulary for describing build and dependency management systems; the presented knowledge model in 
this paper is the first formal semantic vocabulary developed for the build and dependency management 
domain. 

 Extendibility. Our model design considers easy extensibility of our ontologies; the addition of new concepts 
does not require the revision of the existing definitions.   

 Reasoning and Inferencing. Our ontology design provides support for basic semantic reasoning and 
inferencing (e.g., RDFS++ reasoning). The model supports different types of reasoning within and across the 
ontology in order to support a seamless integration of knowledge resources at different abstraction levels. 
Instead of building our model based on general inferencing, we use lightweight reasoning such as Open 
World Assumption, classification, transitivity and consistency. Using the RDFS++ subset of OWL2 inference 
allows us to maintain the scalability and tractability of our model [31].  

In the next section, we explain the knowledge engineering methodology which we applied for the construction of our 
unified knowledge model and the design decisions we made to address some of the open research challenges discussed 
in our research motivation (Section 2). 

4.2 Knowledge Modeling and Engineering 
Different knowledge engineering methodologies have been discussed in the literature (e.g., Noy et al. [33], Van der 
Vet et al. [34], and Uschold et al. [35]. Noy et al. [33]), in their knowledge-engineering approach for ontology 
development, proposed the following seven main steps: (1) determining the domain and scope of the ontology, (2) 
considering the reuse of existing ontologies, (3) enumerating essential terms in the ontology, (4) defining the classes 
and class hierarchy, (5) defining the properties of class-slots, (6) defining the facets of the slots, and (7) creating 
instances. Van der Vet et al. [34] proposed a bottom-up approach for building ontologies. Their approach depends on 
atomism, that is, objects are composed of indivisible units called “atoms.” They use part-whole relations to group 
basic concepts into “superconcepts”. 

Our methodology consists of five major steps (Figure 3) which are similar to the methodology introduced by Noy et 
al. [33]. In Step (1), we perform a manual review of the documentation from selected build and dependency 
management systems and their repository structures to identify and extract their concepts and properties. In Step (2), 
we manually inspect these extracted concepts and properties for each build system to derive initial versions of our 
system-specific ontologies. During Step (3), we use a bottom-up approach (similar to the knowledge modeling 
approach presented by Van der Vet et al. [34])  to identify and move shared concepts and attributes from these system-
specific ontologies into different layers of abstraction (upper ontologies). We then further refine and enrich these 
ontologies, by adding relations and properties, to have a model that is semantic rich enough to allow for the inference 
of knowledge using basic SW reasoning (RDFS++). In Step (4) we populate our knowledge model with facts from 
projects published in open-source build repositories. The evolution of our ontologies with new build and dependency 
management systems and concepts as they become available is part of Step (5). 



8 
 

 

Figure 3: An overview of our knowledge modeling methodology. 

The outcome of our modeling process is a comprehensive ontology that captures the domain of build and dependency 
knowledge. The final layered model is based on a meta-meta model approach similar to the modeling approach 
introduced by the Object Management Group (OMG)12, where the top layer captures core elements, which are 
extended and refined throughout the abstraction hierarchy. Figure 4 presents an overview of the different ontology 
abstraction layers in SBSON. For a complete description of these ontologies, we refer the reader to [36]. 

Within our knowledge hierarchy, the General Concepts layer captures the omnipresent core concepts related to 
software evolution. The Domain-Spanning Concepts extents the General Concepts layer by capturing concepts  (e.g., 
measurements) that span across several subdomains (e.g., vulnerability databases, version control systems, and source 
code). Some Domain-Spanning concepts found within this layer are introduced in Section 5 when other SE knowledge 
sources are integrated with SBSON. Concepts in the Domain-Specific layer are common to resources in a domain, 
such as software build and dependency concepts. Finally, the System-Specific layer represents knowledge (concepts 
and properties) that is specific to a given data source or system and not commonly shared across the domain. In what 
follows, we describe in detail the five knowledge modeling steps we applied.  

 

Figure 4: An overview of the different ontology abstraction layers in SBSON. 

4.2.1 Step (1): Acquisition of Dependency Semantics 
Build systems are based on a formalized syntax and structure, which can be further customized through configurations. 
With this in mind, we conducted a survey of three (3) popular Java build management systems from different vendors 
which make use of the same build repository, Maven Central, to store and resolve project dependencies. We are 
especially interested in finding how different dependency management features are implemented in each studied 

 

12 http://www.omg.org/  
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system. Table 1 provides an overview of these three systems and some general statistics of the Maven Central 
repository are provided in Table 2. It should be noted that, although we only studied systems that use the Maven 
Central repository, our knowledge modelling approach can easily be extended to different build systems and 
repositories (see Section 4.2.5.) 

Table 1: Overview of the 3 build and dependency management systems used in our case studies 

Name Maintainer 
Default 

repository 

Dependency management features 

Transitivity Filtering 
Version 
Ranges 

Scope 
Default 

Resolution 

Ivy (with Ant) Apache 
Maven 
Central 

YES YES YES NO Latest version 

Gradle Gradle YES YES YES YES Latest version 
Maven Apache YES YES YES YES Nearest 

 
Table 2: General statistics of the Maven Central repository 

Repository Identification Scheme # Projects # Releases Snapshot Date 

Maven Central groupID-artifactId-version 279,853 3,687,307 2019-May-07 

 

While the surveyed systems (Table 1) support dependency management features such as transitivity, dependency 
filters (exclusions), and version ranges, only Maven) and Gradle support dependency scopes that allow to limit the 
transitivity of a dependency used for various build tasks. Furthermore, because the Java Virtual Machine (JVM) is 
unable to differentiate between multiple API versions in a project’s class-path, different conflict resolution techniques 
are used by the analyzed systems. For example, Ivy and Gradle choose (by default) during version conflict resolution 
always the latest version of a dependency, while Maven selects the dependency version closest to the project’s root 
definition (the version with the least transitive depth). Among other features supported by these systems are multi-
module projects and inheritance of dependency configuration from parent projects.   

4.2.2 Step (2): Initial System-Specific Ontologies  

Next, we manually identify and extract dependency related concepts and attribute definitions from the schemata and 
their documentation to create system-specific ontologies for each system. Figure 5 provides an overview of the three 
system-specific ontologies we extracted. 

 

 

Figure 5: Overview of individual system-specific ontologies for the analyzed systems. 
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A main challenge we had to deal with during this modeling step was to identify and resolve differences in syntax and 
structure among concepts and properties in the three systems. Table 3 and Figure 6 show examples of such 
representation differences for capturing open and half-open intervals13 ranges and dependency definitions (e.g., Ivy 
uses “]” to declare an open minimum version while Maven uses “(“).  

Table 3: Comparison of how different dependency management systems handle version ranges. 
Version Range Ivy Syntax Maven Syntax Gradle Syntax 

Exact version 1.0 Same as Ivy Same as Ivy 
all versions greater than 1.0 ]1.0,) (1.0,) Same as Maven 
all versions greater or equal to 1.0 [1.0,) Same as Ivy Same as Ivy 
all versions lower or equal to 2.0 (,2.0] Same as Ivy Same as Ivy 
all versions lower than 2.0 (,2.0[ (,2.0) Same as Maven 
all versions greater than 1.0 and lower than 2.0 ]1.0,2.0[ (1.0,2.0) Same as Maven 
all versions greater than 1.0 and lower or equal to 2.0 ]1.0,2.0] (1.0,2.0] Same as Maven 
all versions greater or equal to 1.0 and lower than 2.0 [1.0,2.0[ [1.0,2.0) Same as Maven 
all versions greater or equal to 1.0 and lower or equal to 2.0 [1.0,2.0] Same as Ivy Same as Ivy 
all revisions starting with '1.0.' (e.g., 1.0.1, 1.0.a) 1.0.+ n/a Same as Ivy 
 

 

Figure 6: Example of syntax and structural differences between Maven (left) and Gradle (right) dependency definitions 

 

4.2.3 Step (3): Ontology Abstraction and Refinement 

In this step, we use the extracted system-specific ontologies to abstract a software build-dependency domain ontology. 
This Domain-specific layer not only promotes reuse of concepts shared across system level ontologies, but also 
improves the traceability among system level ontologies by unifying the overall knowledge representation. It also 
allows for the linking of system-level ontologies via abstracted shared concepts and properties found in the domain 
ontology. More specifically, in this step of our methodology, we identify any concept or property that can be promoted 
from the System-specific to the Domain-specific layer of our knowledge model. For example, concepts related to 
transitive dependencies, dependency filtering, and version ranges can be promoted to the Domain-specific layer since 
they are shared among all three system-specific ontologies.  

Although the identification of shared concepts can be considered mostly a straightforward task, providing a design 
that allows for the inference of new knowledge is challenging. Such advanced design requires to establish traceability 
links between domain and system-level ontologies that can support at the application level new types of API 
dependency analysis. In what follows, we describe in detail how we enrich our ontologies with OWL reasoning 
capabilities (provided by the SW) and existing ontology design patterns. More specifically, we describe the modeling 
of (1) dependency links, (2) order of project releases, (3) version ranges, (4) dependency exclusions, and (5) transitive 
dependencies. It should be noted, to improve the readability, we use prefixes as substitutes to the fully qualified names 
of our ontologies. The ontology prefixes used in this paper can be dereferenced using the URIs shown in Table 4. 

 
13 Open intervals do not include the declared minimum and maximum allowed versions of a dependency during dependency resolution; half-open intervals include only 

one of the declared range endpoints.  
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Table 4: Ontology Prefixes 

Ontology 
Namesp

ace 
URI Description 

GENERAL Main 
http://aseg.cs.concordia.ca/segps/ontologies/general/2015/
02/main.owl# 

Our general layer ontology 

MARKOS markos http://www.markosproject.eu/ontologies/osslicenses 
The MARKet for open-
source license ontology 

MEASUREMENT measure 
http://aseg.cs.concordia.ca/segps/ontologies/domain-
spanning/2015/02/measurement.owl# 

Our measurement ontology 

OLO Olo http://purl.org/ontology/olo/core#  The OrderedList Ontology 

ONTTAM Onttam 
http://aseg.cs.concordia.ca/segps/ontologies/domain-
spanning/2017/09/onttam.owl# 

Our trustworthiness 
assessment ontology  

OWL Owl http://www.w3.org/2002/07/owl# Web Ontology Language 

RDF Rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 
Resource Description 
Framework  

SBSON Sbson 
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/build.owl# 

Our Software Build System 
ONtology 

SEON Seon http://se-on.org/ontologies/general/2012/02/main.owl# 
The Software Evolution 
ONtology 

SEON-HISTORY version 
http://se-on.org/ontologies/domain-
specific/2012/02/history.owl# 

SEON’s versioning domain 
ontology 

SEQUAM sequam 
http://aseg.cs.concordia.ca/segps/ontologies/domain-
spanning/2017/09/sequam.owl# 

The quality assessment 
ontology 

SEVONT sevont 
http://aseg.cs.concordia.ca/segps/ontologies/domain-
spanning/2015/02/vulnerabilities.owl# 

The SEcurity Vulnerability 
ONTolgy 

SOCON code 
http://aseg.cs.concordia.ca/segps/ontologies/domain-
specific/2015/02/code.owl# 

Our SOurce Code ONtology 

4.2.3.1 Modeling Dependency Links 

Problem. As shown in Figure 7(a), a defined dependency between any two project releases can have additional 
characteristics associated, such as the version range of the dependency as well as a list of excluded transitive 
dependencies. Since OWL does not natively support the definition of properties on top of other properties, modelling 
such dependency link characteristics becomes a challenge. 

Solution. To address this challenge, we adopt the property reification design pattern14.  In the following, we illustrate 
the use of the property reification pattern to model facts about the dependency relation between two project releases.  

 

Figure 7: An illustration of (a) generic dependency between two releases, and (b) how property reification pattern is 
adopted in modeling dependency links 

We introduce the <sbson:DependencyLink> concept to represent the dependency link between a source (with the 
<sbson:hasDependencySource> property) and a target (with the <sbson:hasDependencyTarget> property). The 
<sbson:DependencyLink> concept provides us with the flexibility of defining dependency-specific version ranges and 
exclusions as shown in Figure 7(b). This reification design provides us with an extensible and expressive modeling 
that can capture different characteristics of project dependency links. However, since a dependency is now modelled 
by the <sbson:DependencyLink> class, transitive reasoning on dependencies is no longer supported by default. We 
mitigate this problem by adding custom rules (explained in detail in section 4.2.3.5) which deduce transitive reasoning 
from the reification design pattern. 

 
14 https://www.w3.org/wiki/PropertyReificationVocabulary  
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4.2.3.2 Modeling the Order of Project Releases 

Problem. Software libraries use version numbers to uniquely identify their releases. These version numbers are 
assigned in an incremental order to define the order of releases and indicate backward compatibility (semantic 
versioning). In the context of dependency management, knowing the order of project releases is necessary for 
resolving dependencies related to version ranges. Unfortunately, the SW does not natively support ordered lists. 

Solution. We address this challenge by reusing an existing OrderedList Ontology design pattern15 to model projects 
and the order of their releases. The OrderedList ontology, illustrated in Figure 8(a) consists of the <olo:OrderedList> 
and <olo:Slot> concepts. An ordered list is composed of a number of slots (using the <olo:slot> property). Items in 
an ordered list are associated to slots by the <olo:item> property and are accessed using the <olo:next> iterator 
property. Data properties such as <olo:length>  and <olo:index> are used to represent the total number of slots in the 
list and the index of each slot respectively.  

Figure 8(b) illustrates our extension of the OrderedList ontology, which now assigns one ordered list to each project. 
Multiple releases of a project are subsequently ordered by assigning them as items to slots of the project’s ordered list. 
Figure 8(c) shows an example of a project with three ordered releases.  

 

 

Figure 8: (a) The OrderedList Ontology, (b) how we model the order of project releases with the OrderedList Ontology, 
and (c) an illustrative example of a project and its ordered releases. 

4.2.3.3 Modeling Version Ranges 

Problem. Manually upgrading dependencies is a tedious and error prone work, especially for projects which depend 
on frequently updated libraries. Version ranges are a measure, supported by several build and dependency management 
systems, designed to enable developers to automatically upgrade their dependencies without having to adjust the 
version number in their build file every single time a new version of the dependency is released. However, as discussed 
in Section 4.2.2, build and dependency management systems use version ranges with different syntaxes. 

Solution. Figure 9 shows the integration of concepts from Figures 7(b) and 8(b) to create an effective and flexible 
model to represent dependency version ranges (at the domain layer). The <sbson:VersionRange> concept uses data 
properties such as <sbson:exactVersion>, <sbson:lowerThanVersion>, and <sbson:greaterThanVersion> to represent 
the version range of a dependency link. Details on how a dependency version is inferred are provide in Section 4.2.3.5.  

 
15 http://smiy.sourceforge.net/olo/spec/orderedlistontology.html 
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Figure 9: Concepts used to model and reason about dependency version ranges 

4.2.3.4 Modeling Dependency Exclusions (Filtering) 

Problem. Dependency exclusion is a feature provided by many dependency management tools (e.g., Maven, Gradle) 
to support dependency mediation. It allows users to explicitly exclude specific transitive dependencies when building 
a project. Such dependency exclusions can occur at two different levels: per-dependency or per-configuration/module. 
The configuration/module exclusion makes it possible to exclude a transitive dependency completely from all 
dependencies during the project build phase. The per-dependency scope only excludes a transitive dependency for the 
specified dependency; it is possible that another dependency would re-include that excluded dependency. Ivy and 
Gradle provide support for both whiles Maven supports only per-dependency exclusion. While our approach currently 
only supports per-dependency exclusions it can easily be extended to support per configuration/module dependencies. 

 

Figure 10: Transitive exclusion at per-dependency scope 

Figure 10 shows an example of a per-dependency exclusion. Project ‘A’ defines a dependency on ‘B’ but excludes 
the transitive dependency on ‘E’. This means that during the build of ‘A’, project ‘E’ would be excluded from the 
transitive dependencies of ‘B’. When querying for all transitive dependencies of ‘A’, the result should be {B, C, and 
D}. Since exclusions are dependency specific, the query results will be project specific. For example, querying the 
transitive dependencies of ‘B’ should give {D and E} because ‘E’ is not excluded in any of B’s dependency definitions. 

Solution. Similar to the dependency version ranges, we use again the <sbson:DependencyLink> concept from the 
property reification pattern (see Figure 7(b)) to define any dependency-level exclusions on projects or releases through 
the <sbson:excludesProject> and <sbson:excludesRelease> properties (Figure 11).  

 

Figure 11: Concepts used to model and reason about dependency exclusion 

In what follows, we describe how we can now, using the dependency version ranges and exclusions design, infer bi-
directional direct and transitive dependencies. 
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4.2.3.5 Reasoning on Direct and Transitive Dependencies 

Problem. As discussed in Section 4.2.3.3 and 4.2.3.4, traditional build and dependency management systems allow 
developers to specify a version range for direct dependencies and exclude unwanted transitive dependencies. This 
possibility of version ranges and excluded transitive dependencies in a project’s definition makes the automatic 
resolution of direct and transitive dependencies a non-trivial task. Our modelling approach, using semantic rules and 
ontology design patterns, offloads much of this challenge (reasoning about dependency resolution) to the SW 
reasoners. However, as introduced in Section 4.2.3.1, modelling dependency links as an OWL class instead of a 
property removes the standard support for transitive reasoning on dependencies. 

Solution. We introduce custom SWRL rules which take advantage of the scalable reasoning services (e.g., RDFS, 
RDFS++) provided by the SW stack and the triplestore to reason about dependency resolution. To distinguish between 
direct and inferred transitive dependencies, we introduce two new properties, <sbson:hasDirectDependencyOn> and 
<sbson:hasTransitiveDependencyOn>. In what follows, we describe in detail the rules we created that allow us to 
reason about direct dependencies based on version ranges, and transitive dependencies. 

Direct Dependency Reasoning. To allow for the automatic resolution of direct dependencies, we define three (3) rules 
which infer the correct instance of a dependency version, will be assigned to the range of the 
<sbson:hasDirectDependencyOn> property. The rules are based on the following version ranges:  exact versions 
(Figure 12), versions lower than a specified value (Figure 13), and versions greater than a specified value (Figure 14). 
The rules take advantage of the ordered list pattern (see Figure 8(b)) and the dependency link reification pattern (see 
Figure 7(b)) to allow for the inference of the final dependency version to be used. 

DependencyLink(?link), hasDependencySource(?link, ?release1), hasDependencyTarget(?link, ?project2), 
hasVersionRange(?link, ?range), exactVersion(?range, ?version), hasRelease(?project2, ?release2), 
hasVersionNumber(?release2, ?version) 
→ hasDirectDependencyOn(?release1, ?release2). 

Figure 12: Inferring DirectDependencyOn based on an “exact” version range 

 

DependencyLink(?link), hasDependencySource(?link, ?release1), hasDependencyTarget(?link, ?project2), 
hasVersionRange(?link, ?range), lowerThanVersion(?range, ?version), hasRelease(?project2, ?release), 
hasVersionNumber(?release, ?version), hasOrderedList(?project2, ?list), slot(?list, ?slot1), slot(?list, ?slot2), item(?slot1, 
?release), item(?slot2, ?release2),  index(?slot1, ?index1), index(?slot2, ?index2), swrlb:substract(?index2, ?index1, 1),   
→ hasDirectDependencyOn(?release1, ?release2). 

Figure 13: Inferring DirectDependencyOn based on a “lower than” version range 

 

DependencyLink(?link), hasDependencySource(?link, ?release1), hasDependencyTarget(?link, ?project2), 
hasVersionRange(?link, ?range), greaterThanVersion(?range, ?version), hasRelease(?project2, ?release), 
hasVersionNumber(?release, ?version), hasOrderedList(?project2, ?list), length(?list, ?len), slot(?list, ?slot1),  
slot(?list, ?slot2), item(?slot1, ?release), item(?slot2, ?release2),  index(?slot1, ?index1), index(?slot2, ?len), 
swrlb:greaterThan(?len, ?index1),   
→ hasDirectDependencyOn(?release1, ?release2). 

Figure 14: Inferring DirectDependencyOn based on a “greater than” version range 

Transitive Dependency Reasoning. This reasoning provides flexible and scalable inference of transitive dependencies 
in the absence or presence of dependency exclusions. A pre-computation can be performed and inferred triples can be 
materialized in the triple store so that future queries run more efficiently. Since SWRL does not allow for Negation as 
Failure16, rules such as Person(?p) ^ ¬ hasCar(?p, ?c) → CarlessPerson(?p) are not allowed. Only individuals with an 
explicit OWL axiom stating that they have no car can be safely concluded to be without a car: Person(?p) ^ (hasCar = 
0)(?p) → CarlessPerson(?p). Therefore, to infer about the absence or presence of dependency exclusions, a 
<sbson:hasNumberOfExclusions> data property is assigned to the <sbson:DependencyLink> concept to store the total 
number of excluded dependencies for a given project dependency. Using this property, our rules ( Figures 15 and 16) 
can infer now transitive dependencies in both the presence and absence of exclusions. 

 
16 https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ#Does_SWRL_support_Classical_Negation  
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DependencyLink(?link), hasDependencySource(?link, ?release1), hasDependencyTarget(?link, ?release2), 
dependsOn(?release2, ?release3), hasNumberOfExclusions(?link, 0)  
→ hasTransitiveDependencyOn (?release1, ?release3). 

Figure 15: Inferring hasTransitiveDependencyOn in the absence of exclusions 

DependencyLink(?l), hasDependencySource(?l, ?r1), hasDependencyTarget(?l, ?r2), dependsOn(?r2, ?r3), 
hasNumberOfExclusions(?link, ?exclusions), swrlb:greaterThan(?exclusions, 0), excludesProject(?l, ?p1),  
hasRelease(?p2, ?r3), owl:differentFrom(?p1, ?p2)  
→ hasTransitiveDependencyOn (?r1, ?r3). 

Figure 16: Inferring hasTransitiveDependencyOn in the presence of exclusions 

4.2.3.6 A Unified Knowledge Representation 

The result of our modeling process is SBSON, which captures knowledge from build and dependency management 
systems at different abstraction levels. Figure 17 provides an overview of the core SBSON concepts and object 
properties. It should be noted that data properties have been omitted to improve the readability of the figure.  

 

Figure 17: Overview of the concepts and (object) properties in the unified SBSON family of ontologies 

A key concept in our knowledge model is the <sbson:BuildRelease> (Domain-Specific layer), which is a subclass of 
the <main:Release> concept (General layer). Build releases model distributed releases of software projects, captured 
by the <sbson:BuildProject> concept (Domain-Specific layer). These build releases are stored in online build 
repositories such as Maven Central. Multiple releases of a project are ordered using slots in an <olo:OrderedList> 
(Domain-Spanning layer). In our modeling approach, build releases define their dependencies on other releases using 
a <sbson:DependencyLink> (Domain-Specific layer). Special characteristics of a dependency link are represented 
using the <sbson:VersionRange> and <sbson:DependencyScope>, both being Domain-Specific concepts, and the 
<sbson:DependencyType> concept at the System-Specific layer. Scope of dependencies, as well as dependency types 
are specific to an individual build system and are therefore modeled as part of the system ontologies. 
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4.2.4 Step (4): Ontology Population 

In this step, knowledge extracted from the Maven Central Repository is automatically transformed into semantic 
triples based on the RDF framework. The transformation and population process rely on the generation of unique, de-
referenceable and HTTP-resolvable URIs for the resulting triples. 

Figure 18 shows an example for a triple that is generated for an instance of a direct project dependency. Each generated 
URI contains a base URI, followed by the SBSON layer, knowledge version, and ontology to which that fact belongs. 
This is followed by the annotation ID; the annotation ID identifies whether a given URI represents a semantic type 
(e.g., hasDirectDependencyOn) or a populated individual (e.g., commons-fileupload:commons-fileupload:1.4). 

 

Figure 18: Anatomy of the URI of a generated triple 

4.2.5 Step (5): Ontology Evolution 
The last step of our methodology reflects that our knowledge modelling approach is an iterative process, with 
ontologies evolving as additional build and dependency management systems is added to the knowledge model. The 
addition of new system-specific ontologies can lead to changes in the domain ontology. In addition to the inclusion or 
promotion of concepts and properties to the domain ontology capturing common dependency management features 
and semantics, there is also the possibility that existing domain concepts and properties will be demoted to the level 
of system-specific ontologies. As discussed earlier, a key benefit of using ontologies is that they can be extended as 
relationships and concept matching are easy to add to existing ontologies without impacting dependent processes and 
analysis services. However, a knowledge engineer will face the challenge to establish an equilibrium between the 
amount of information needed and the granularity of the knowledge available to produce useful results. 

5 Example Applications Supported by SBSON 
In what follows, we introduce two examples, to illustrate the flexibility of our modeling approach in being able to 
integrate knowledge resources and making this knowledge accessible and reusable across resource boundaries through 
user defined queries that take advantage of the Semantic Web and its inference services. The first application scenario 
demonstrates how SBSON can support impact analysis to identify potentially affected components due to API 
breaking changes. For the second example, we illustrate how the dependency information modeled in SBSON when 
combined with bi-directional links to vulnerability information resources, can be used to provide a global vulnerability 
analysis that can identify all projects which directly and indirectly depend on a known vulnerable component. 

5.1 Early Detection of API Breaking Change Impacts 
Objective: As discussed in Section 4.2.1, different build and dependency management systems adopt different conflict 
resolution techniques to deal with multiple versions of a dependency in a project. For example, Maven selects the 
version of the dependency closest to the root of the dependency tree. However, such conflict mediation, can lead to 
potential runtime failures that are not identified during the build or compilation process.  

In what follows we illustrate, how our approach can support API consumers in identifying potential impacts of an API 
change on their product. Our approach takes advantage of our knowledge model that supports the analysis of both 
direct and indirect (transitive) third-party library usage across thousands of open-source projects.  

Approach: Since part of this API impact analysis requires access to source code information, we introduced our 
SOCON ontology which is an extension of SEON’s domain-level source code ontology [30]. SOCON introduces 
additional concepts and properties to model knowledge relevant to API breaking changes and their impact. In addition, 
we introduced the <code:containsCodeEntity> property, and its inverse <code:foundInRelease> property, to link 

< http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/build.owl#commons-fileupload:commons-fileupload:1.4 >

< http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/build.owl#commons-io:commons-io:2.2 >

< http://aseg.cs.concordia.ca/segps/ontologies/domain-specific/2015/02/build.owl#hasDirectDependencyOn >
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project releases in SBSON to their internal code elements in SEON.  Figure 19 summarizes the main concepts and 
object properties, found in the four abstraction layers of our model used for the impact analysis of API breaking 
changes. It should be noted that data properties have been omitted to improve the readability of the figure.  

 
Figure 19: Ontologies and concepts involved in API change impact analysis 

An important concept in our knowledge model is the <sbson:BuildRelease> concept (located at the domain-level of 
our SBSON ontology), which is a subclass of the Release concept found in the general SBSON ontology layer. 
<sbson:BuildRelease> models distributed releases of software projects, where a build release isReleaseOf a 
<sbson:BuildProject>, and models that a project can have several releases. <sbson:BuildRelease> defines its 
dependencies on other releases using <sbson:DependencyLink>. Stakeholders, such as Developers, distribute new 
releases which can lead to <code:ApiChanges>. An API change can either be a <code:BreakingChange> or a 
<code:NonBreakingChange>. API changes are detected by comparing <code:CodeEntity> individuals using the 
<code:priorAPI> and <code:currentAPI> relations. Code changes are captured at different granularity levels such as 
<code:Field>, <code:Method>, and <code:Class>. A <code:ChangeCoupling> contains all API changes which coexist 
due to a dependency between API elements. Furthermore, our domain level ontology for source code includes a 
<code:Visibility> concept. In most object-oriented programming languages, mechanism for information-hiding exists 
to control the access to parts of the code (e.g., in Java public, default, protected, and private are used to specify the 
visibility of methods and fields). These visibility modifiers are defined in the system-specific (Java) ontology since 
the semantics of visibility modifiers might vary among programming languages. Given this unified representation, 
developers can now use (user and predefined) SPARQL queries to analyze whether their application is potentially 
exposed to direct and indirect breaking changes. A complete description of our ontologies can be found at [36]. 

Results: In what follows, we report our results from a case study, which we conducted on ASM17, a Java bytecode 
manipulation library which underwent a radical redesign from release 3.X to 4.0. As part of its redesign, release 4.0 
introduced several breaking changes (e.g., interfaces were changed to abstract classes, breaking previous 3.X API 
versions). Our case study analyzed the impact of these breaking changes to the dependent projects in the Maven 
ecosystem. Table 5 summarize the details of our ASM datasets.  

Table 5: Summary of ASM releases included in the case studies 
ASM Project # Releases # Unique Dependencies 

ASM 3.X and older 20 364 
ASM 4.X and newer 13 848 

 
17 http://asm.ow2.org/ 
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Although ASM versions may contain binary incompatibilities, the inclusion of these APIs in a client project’s build 
might not automatically result in breaking changes. For these changes to become breaking changes, an incompatible 
API must be invoked. For our analysis, we create therefore a static, global call graph to determine if a changed API is 
(potentially) called by the client application. In what follows, we refer to a client as all projects which have declared 
a dependency on any ASM 4+ library; dependent refers to projects (directly used by a client) which have a dependency 
to an ASM library version 3.X or older.  

The query in Figure 20 identifies all projects that are dependent (either direct or transitive) on different versions of the 
ASM library. The query in Figure 21 (an extension of Figure 20) returns such transitive usages of different API 
versions within a project. The query first identifies two unique ASM releases that contain breaking changes and then 
identifies any usage of these incompatible APIs within client projects and their transitive build dependencies.  

SELECT ?project ?asm1 ?asm2 
WHERE { 
  <…/build.owl#org.ow2.asm:asm> main:hasRelease ?asm1.  
  <…/build.owl#org.ow2.asm:asm> main:hasRelease ?asm2. 
  ?project build:hasDirectDependencyOn ?asm1. 
  ?project build:hasTransitiveDependencyOn ?asm2. 
  FILTER(?asm1 != ?asm2).} 

Figure 20: SPARQL query identifying the use of multiple versions of the ASM library in projects 

SELECT ?client ?clientAPIEntity2 ?dependency ?dependencyAPIEntity 
WHERE { 
  #identify use of breaking change entity in client and dependency 
  ?client code:containsCodeEntity ?clientAPIEntity1; code:containsCodeEntity ?clientAPIEntity2. 
  ?clientAPIEntity1 main:dependsOn ?currentAPIElement. 
  ?dependency code:containsCodeEntity ?dependencyAPIEntity. 
  ?dependencyAPIEntity main:dependsOn ?priorAPIElement. 
  ?clientAPIEntity2 main:dependsOn ?dependencyAPIEntity. 
  { SELECT ?client, ?dependency ?asm1, ?asm2 
    WHERE { 
       <…/build.owl#org.ow2.asm:asm> main:hasRelease ?asm1; main:hasRelease ?asm2. 
     ?client build:hasDirectDependencyOn ?asm1; build: hasDirectDependencyOn ?dependency. 
     ?dependency build: hasDirectDependencyOn ?asm2. 
     #Identify ASM releases for which breaking changes have been populated in the KB 
     ?breakingChange a code:BreakingCodeChange; code:hasPriorAPI ?priorAPIElement. 
 ?breakingChange code:hasCurrentAPI ?currentAPIElement. 
     ?asm1 code:containsCodeEntity ?currentAPIElement.           
     ?asm2 code:containsCodeEntity ?priorAPIElement. 
     FILTER(?asm1 != ?asm2)    } 
  } 
} 

Figure 21: SPARQL query to identify transitive usage of API elements impacted by breaking changes 

The boxplots in Figure 22 summarize the distribution of dependents among clients as well as the usage of potential 
incompatible APIs within client and dependent projects. Clients, on average, include 5 dependents which may 
introduce different versions of the ASM library as part of their classpath. Further analysis (Figure 22) shows that on 
average 0.21 of the ASM API 4.X interface and 0.34 of the interface from earlier ASM version (ASM 3.X or earlier) 
are invoked by a dependent. 
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Figure 22: Distribution of client dependencies and their usage of incompatible ASM APIs 

Table 6 provides two concrete examples where clients are exposed to potential runtime errors due to their indirect use 
of incompatible ASM API versions. The solr-shade 2.0.0 project directly depends on ASM v4.1 and indirectly on 
ASM v3.1, since lucene-expressions 4.7.1 which is used by solr-shade 2.0.0, depends on ASM v3.1.  

Using Maven’s built-in conflict mitigation, ASM v3.1 will automatically be excluded from the project, and only ASM 
v4.1 will be used. In this example, an unexpected runtime exception will be thrown when the fromExpression method, 
since it indirectly invokes the now excluded ASMv3.1 ClassVisitor and MethodVisitor APIs 

Table 6: Some client projects potentially impacted by transitive incompatible ASM API versions  

5.2 SV-AF: Security Vulnerability Analysis Framework 
Objective: It is generally accepted that inadvertent programming mistakes can lead to software security vulnerabilities 
and attacks [37]. Mitigating such vulnerabilities can become a major challenge for developers, since not only their 
own source code might contain exploitable code, but also the code of third-party APIs or external components used 
by their system.  

Existing work (e.g., [38]) attempts to minimize the introduction and exploitation of software security vulnerabilities. 
Unfortunately, most of these analysis techniques are limited to artifacts created within a project context and do not 
consider the reuse and sharing of third-party components across their own project boundaries in their analysis.  

Different specialized Software Vulnerability Databases (SVDBs) (e.g., NVD) have been introduced by the 
Information Security domain to help track software vulnerabilities and their potential solutions. These SVDBs were 
introduced in response to the increasing number of software attacks, which are no longer limited to a project but often 
affect millions of computers and hundreds of different systems. These repositories can be considered as trusted 
information silos which are typically not directly linked to other software repositories, such as source code repositories 
containing reported instances of these problems.  

In our previous work [9], we introduced SV-AF, which establishes traceability links between security and software 
databases for automatically tracing source code vulnerabilities at the API level across project boundaries. In the 
following example, we show, how our unified knowledge representation, with its bi-directional linking of other 
knowledge resources can be used to a.) analyze the potential impact of a vulnerable component on a software 
ecosystem and b.) identify vulnerable components a system might directly or indirectly depend on. More specifically, 
how our SBSON ontology in combination with the SEON and SEVONT ontologies can support novel types of 
vulnerability analysis at a global scope. 

Client Project Potentially Impacted API 

solr-shade 2.0.0 
Class: DocumentExpressionDictionaryFactory 
Method:fromExpression(String, Set<org.apache.lucene.search.SortField>) 

lucene-expressions 6.0.1 
Class: JavascriptCompiler 
Method: compileExpression(ClassLoader) 
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Approach: For us to take full advantage of the knowledge captured in the SBSON, SEON and SEVONT ontologies, 
we apply ontology alignment techniques to establish traceability links among these ontologies. This linking process 
requires either shared concepts across knowledge resources or identifying semantically identical or similar concepts 
within the different knowledge sources. These links reduce the semantic gap between these ontologies and are essential 
pre-requisites for supporting seamless knowledge integration. SV-AF uses the Probabilistic Soft Logic (PSL) 
framework [39] to establish weighted links between ontological models of vulnerability databases (SEVONT) and 
software dependency repositories (SBSON). These traceability links are created based on semantically identical or 
similar concepts within the different knowledge sources. Similarities among SEVONT-SBSON instance pairs are 
determined based on literal information such as name, version and vendor. Using user defined rules, the PSL 
framework computes similarity weights between all possible instance pairs in the knowledge base (total of |SEVONT| 
x |SBSON| instance pairs). These computed similarity weights, based on a given similarity threshold, are used to infer 
owl:sameAs relations between similar instances found in the two ontologies. The owl:sameAs construct is a built-in 
OWL predicate used to align two concepts from different ontologies. More details on the ontologies, ontology 
alignment process, and evaluation of the SEVONT-SBSON alignment can be found in our existing work [9]. 

The result of this alignment processes is a unified that integrates build dependency, source code, versioning history, 
and software vulnerability concepts and relations across different abstraction layers. The OWL classes and object 
properties used for our API-level vulnerability impact analysis are shown in Figure 23 (data properties have been 
omitted to improve readability of the figure).  

 

Figure 23: The SV-AF ontology concepts involved in API-level vulnerability impact analysis 

Results: We performed a case study using the NVD and Maven Central repositories. For the case study, we 
downloaded the Maven repository (Table 7) and all NVD vulnerability xml feeds from 1990 to 2016. The dataset 
includes 74,945 unique vulnerabilities that affect 109,212 unique software products. Our study showed that 750 (or 
0.062%) of all Maven projects contain known security vulnerabilities already reported in the NVD database. Further 
analysis revealed that many projects not only suffer from one but from multiple vulnerabilities. We also found that 
48.8% of the 750 identified vulnerable project releases suffer from multiple security vulnerabilities, with PostgreSQL 
7.4.1 being the most vulnerable project in the dataset, containing 25 known vulnerabilities. This information about 
potential vulnerability components can guide developers in their system update and upgrade decisions by avoiding the 
reuse of APIs/components with known security vulnerabilities or components that might be prone to vulnerabilities.  
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Using the bi-directional links in our knowledge model between the NVD and the Maven repository, our analysis is no 
longer limited to identifying only direct dependencies on vulnerable components. Instead, given a vulnerable 
component, we can now provide a more holistic analysis, which allows us to identify all projects which directly and 
indirectly depend on a given vulnerable component. Figure 24 illustrates a typical usage scenario for our modeling 
approach. While the Geronimo-jetty6-javaee5 (version 2.1.1) has no known vulnerability reported, the project depends 
on several components (level 1 dependencies) with known security issues (5 Java projects with a total of 15 known 
vulnerabilities), making also Geronimo-jetty6-javaee5 potentially a very vulnerable component. 
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Figure 24: Geronimo-jetty6-javaee5 using 5 vulnerable projects (level 1 dependencies) 

In addition, we take advantage of transitive and subsumption inferences applied at the source code level to identify 
vulnerable APIs and trace their impact to external dependencies (details of our source code transitivity and 
subsumption inferencing can be found in [9]).  

Using our SEVONT, SEON, and SBSON ontologies, we can now execute the SPARQL query in Figure 25 to restrict 
the scope of our transitive dependency analysis by including only those components that have an actual call 
dependency to the vulnerable source code. Table 7 shows that 55 of the 346 analyzed dependent projects actually use 
the API from the vulnerable project. This highlights that there are still many systems (15.9%) that rely on libraries 
with known security vulnerabilities. Moreover, 18 of these 55 dependent projects not only include the API but also 
actually call the class which contains the vulnerable code. 2 out of these 18 dependent projects called and executed 
the vulnerable methods within the vulnerable projects.  

SELECT ?project ?vulnerablecode ?client ?code 
WHERE { 
  ?project rdf:type sbson:BuildRelease. 
  ?project code:containsCodeEntity ?vulnerableCode. 
  ?vulnerableCode  rdf:type sevont:VulnerableCode. 
  ?client code:containsCodeEntity ?code. 
  ?client sbson:hasDirectDependencyOn ?project. 
  ?code main:dependsOn ?vulnerableCode.  
} 

Figure 25: Query to retrieve vulnerable code fragments across project boundaries 
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Table 7: Case Study #3 Results 

Vulnerablity Project 
# Crawled 

Dependencies 
# Actual 

usage 
# Vuln. 

Classes usage 
# Vuln. 

Methods usage 
CVE-2015-0227 Apache WSS4J 1.6.16 242 15 10 0 
CVE-2014-0050 Commons Fileupload 1.1 2 2 1 1 
CVE-2014-0050 Commons Fileupload 1.2 102 38 7 1 

 

6 Related Work 
Given the diversity in technologies and software development processes, software artifacts often end up disconnected 
from each other, making it difficult for programmers to locate knowledge relevant to their specific development task. 
While the MSR community has made significant progress in analyzing individual repositories,  the MSR community 
has yet to address the issue of seamless integrating these knowledge resources [30]. Several approaches to establish 
taxonomies for software engineering through ontologies have been presented recently to describe domain knowledge 
of developers, source code, and other software artifacts. The common goal of these approaches is to foster reuse and 
support the automatic inference of new knowledge. 

For example, in software engineering, ontologies have been used to support requirement management [41], traceability 
[42], and use case management [43]. In the software testing domain, KITSS [44] is a knowledge-based system that 
can assist in converting a semi-formal test case specification into an executable test script. For the software 
maintenance domain, Ankolekar et al. [45] provide an ontology to model software, developers, and bugs. The authors 
developed a prototype Semantic Web based system, Dhruv, which provides an enhanced semantic interface to bug 
resolution messages and recommends related software objects and artifacts for the OSS community. Ontologies have 
also been used to describe the functionality of components using a knowledge representation formalism that allows 
more convenient and powerful querying. In [46] the KOntoR system was introduced to store semantic descriptions of 
components in a knowledge base and supports the semantic querying of this knowledge. In [47], Jin et al. discuss an 
ontological approach of service sharing among program comprehension tools. Hyland-Wood et al. [48] proposed an 
OWL ontology of software engineering concepts, including classes, tests, metrics, and requirements. Bertoa et al. [49] 
focused on software measurement. Witte et al. [50] used text mining and static code analysis to map documentation 
to source code in RDF for software maintenance purposes. Yu et al. [51] represented static source code information 
using an ontology and SWRL rules to identify common bugs in source code. In [54], Olszewska et al. introduce a 
general ontological modeling approach to provide a general support and guide the selection of software lifecycle 
artifacts during the software development life cycle. 

Several researchers have described software evolution artifacts extracted from existing software repositories as OWL 
ontologies to facilitate everyday repository mining activities. Schlutter et al [58] present a general knowledge 
extraction approach based on an explicit knowledge representation of the content of natural language requirements as 
a semantic relation graph. Their approach is fully automated and includes an NLP pipeline to transform unrestricted 
natural language requirements into a graph. Kiefer et al. presented EvoOnt [52], an integration of a code ontology 
model, a bug ontology model, and a version ontology model used to detect bad code smells and extract data for 
visualizing changes in code over time. Iqbal et al. presented their Linked Data Driven Software Development (LD2SD) 
methodology [53] to provide RDF-based access to JIRA bug trackers, Subversion, developer blogs, and project 
mailing lists. Wursch et al. presented SEON [30], a family of ontologies that describe many different facets of a 
software’s lifecycle. SEON is unique in that it comprises of multiple abstraction layers. In [59] Zhou et al. introduces 
DockerKG, a tool to constructing a knowledge graph of Docker artifacts, which includes sources of software packages, 
their relationships and information of package installation procedures and operating systems. While the approach by 
Zhou et al [59] introduces a knowledge graph for Docker artifacts, their objective differs from ours in terms of 
providing a more generic dependency management and software analytics approach, which provides an extensible 
knowledge modeling approach, which focuses on the use of SW inference services and allowing for the full support 
of the FAIR knowledge and data modeling principle. 
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Like SEON, our approach organizes ontologies in consecutive layers of abstractions with clear representational 
purpose. We also extend existing source code ontologies and introduce a taxonomy for describing dependency 
management semantics. Given this standardized knowledge representation, we can envision interesting interactions 
among our semantics-aware analysis, ontologies and knowledge graphs introduced by others (e.g., [59]). Such 
extensions could lead to an entirely new family of software analysis services or at least simplify and enhance the 
implementation of existing ones. 

7 Threats to Validity 
Quality of our Ontology Design. One major benefit of our approach is its ability to integrate and reuse ontologies. 
However, assessing the quality of ontology designs is an inherently difficult problem, since what constitutes quality 
depends on different non-functional requirements (e.g., reuse, usability, extensibility, expressiveness and reasoning 
support). We partly address this threat by using existing reasoners (such as Pellet, Hermit, and JFact) and tools (OOPS!  
and the Neon Toolkit) to check our ontology design for taxonomic, syntactical and consistency problems. To 
determine if our ontology constraints are sufficient to identify incorrect data, we incrementally populated the 
ontologies with facts during the evaluation process. While the reasoners did not report any inconsistencies in our 
ontologies, OOPS! reported a few problems in our ontologies which violated some of the design rules in OOPS! rule 
catalog. The identified violations were due to missing license information and annotations (such as <rdfs:label> and 
<rdfs:comment>) for some of our ontology elements. As part of our ontology maintenance, we fixed these issues.  

Another potential threat to our approach is whether the set of concepts we considered are sufficient to capture the 
semantics of the analyzed domain. There is always a trade-off in terms of expressivity and usefulness in the design of 
knowledge bases; an equilibrium should be established between the amount of information needed to accomplish a 
task and the granularity of the knowledge that should be available to produce useful results. We partly addressed this 
threat through our case studies, which illustrate that our modeled build and dependency management concepts are 
sufficient to support different types of dependency analysis.  

Generalizability. The case studies described in this research are limited in their scope to open-source Java projects in 
the Maven repository, and the results obtained might not be applicable to other programming languages or build 
repositories. Our domain specific ontologies are generic in nature and can be extended to specific system level 
ontologies. For example, our domain level ontologies for build management systems captures only core concepts and 
dependencies found commonly in the domain of build management systems. As part of our modeling approach, these 
core concepts can be further extended and enriched at the system level, without having to change our overall ontology 
design. For this research, we do model the domain of object-oriented programming languages, software vulnerabilities, 
software licenses, and build repositories as individual domains of discourse and provide concrete system level 
extensions for Maven, NVD and Java. 

8 Conclusion 
The software engineering landscape has changed over the last decade with projects and organizations increasingly 
taking advantage of the plethora of features and functionality provided by existing third-party libraries and 
components. Despite the existing role of build and dependency management systems, little is known on how this 
software dependency information can be integrated with other software-related knowledge to improve software 
development processes. In this research, we argue that leveraging build and dependency information in software tasks 
needs a technology-independent representation of build and dependency management system semantics, integrated 
with knowledge from other software artifacts. To address this, we present an approach for developing an ontology-
based knowledge model for build and dependency management systems (SBSON). Our approach allows us to 
reconcile and integrate heterogeneous build system facts from several build systems. It takes advantage of OWL 
reasoning capabilities as well as existing ontology design patterns to abstract and reuse concepts across system level 
ontologies, while at the same time improve knowledge integration and reuse. We further discuss the integration of 
additional knowledge sources with SBSON and illustrate the applicability of our approach in analyzing the impact of 
code reuse from a dependency management perspective. As part of our future work, we plan to integrate crowd-based 
knowledge sources (e.g., blogs, online video tutorials, Q/A forums) with our model to derive new applications.  



24 
 

References 
[1] J. Z. Gao, C. Chen, Y. Toyoshima, and D. K. Leung, “Engineering on the Internet for global software production,” Computer 

(Long. Beach. Calif)., vol. 32, no. 5, pp. 38–47, May 1999. 
[2] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends of library usage,” Proc. Jt. Int. Annu. ERCIM Work. 

Princ. Softw. Evol. Softw. Evol., pp. 57–62, 2009. 
[3] M. P. Robillard, “What Makes APIs Hard to Learn? Answers from Developers,” IEEE Softw., vol. 26, no. 6, pp. 27–34, Nov. 

2009. 
[4] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and D. Lo, “Improving reusability of software libraries through usage 

pattern mining,” J. Syst. Softw., vol. 145, pp. 164–179, Nov. 2018. 
[5] S. van der Burg, E. Dolstra, S. McIntosh, J. Davies, D. M. German, and A. Hemel, “Tracing software build processes to 

uncover license compliance inconsistencies,” in Proceedings of the 29th ACM/IEEE international conference on Automated 
software engineering - ASE ’14, 2014, pp. 731–742. 

[6] S. Mcintosh, B. Adams, M. Nagappan, and A. E. Hassan, “Mining Co-change Information to Understand When Build Changes 
Are Necessary,” in 2014 IEEE International Conference on Software Maintenance and Evolution, 2014, pp. 241–250. 

[7] X. Xia, D. Lo, S. McIntosh, E. Shihab, and A. E. Hassan, “Cross-project build co-change prediction,” in 2015 IEEE 22nd 
International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2015, pp. 311–320. 

[8] S. McIntosh et al., “Collecting and leveraging a benchmark of build system clones to aid in quality assessments,” Companion 
Proc. 36th Int. Conf. Softw. Eng. - ICSE Companion 2014, pp. 145–154, 2014. 

[9] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SV-AF - A Security Vulnerability Analysis Framework,” in IEEE 27th 
International Symposium on Software Reliability Engineering (ISSRE), 2016, pp. 219–229. 

[10] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “Recovering Semantic Traceability Links between APIs and Security 
Vulnerabilities: An Ontological Modeling Approach,” in Proceedings - 10th IEEE International Conference on Software 
Testing, Verification and Validation, ICST 2017, 2017, pp. 80–91. 

[11] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab, “Why do developers use trivial packages? an empirical 
case study on npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering - ESEC/FSE 2017, 
2017, pp. 385–395. 

[12] F. L. de la Mora and S. Nadi, “An Empirical Study of Metric-based Comparisons of Software Libraries,” in Proceedings of the 
14th International Conference on Predictive Models and Data Analytics in Software Engineering - PROMISE’18, 2018, pp. 
22–31. 

[13] F. Thung, “API recommendation system for software development,” in Proceedings of the 31st IEEE/ACM International 
Conference on Automated Software Engineering - ASE 2016, 2016, pp. 896–899. 

[14] M. M. Rahman, C. K. Roy, and D. Lo, “RACK: Automatic API Recommendation Using Crowdsourced Knowledge,” in 2016 
IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), 2016, pp. 349–359. 

[15] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers update their library dependencies?,” Empir. Softw. 
Eng., vol. 23, no. 1, pp. 384–417, Feb. 2018. 

[16] C. Teyton, J. R. Falleri, and X. Blanc, “Mining library migration graphs,” Proc. - Work. Conf. Reverse Eng. WCRE, pp. 289–
298, 2012. 

[17] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How the Apache community upgrades dependencies: an 
evolutionary study,” Empir. Softw. Eng., vol. 20, no. 5, pp. 1275–1317, 2014. 

[18] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an API: cost negotiation and community values in three 
software ecosystems,” in Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software 
Engineering - FSE 2016, 2016, pp. 109–120. 

[19] A. Decan, T. Mens, and M. Claes, “An empirical comparison of dependency issues in OSS packaging ecosystems,” in 2017 
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), 2017, pp. 2–12. 

[20] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vulnerabilities in the npm package dependency network,” 
in Proceedings of the 15th International Conference on Mining Software Repositories - MSR ’18, 2018, pp. 181–191. 

[21] M. Cadariu, E. Bouwers, J. Visser, and A. Van Deursen, “Tracking known security vulnerabilities in proprietary software 
systems,” 2015 IEEE 22nd Int. Conf. Softw. Anal. Evol. Reengineering, SANER 2015 - Proc., pp. 516–519, 2015. 

[22] D. M. German, M. Di Penta, and J. Davies, “Understanding and Auditing the Licensing of Open Source Software 
Distributions,” in 2010 IEEE 18th International Conference on Program Comprehension, 2010, pp. 84–93. 

[23] R. G. Kula, D. M. German, T. Ishio, A. Ouni, and K. Inoue, “An exploratory study on library aging by monitoring client usage 
in a software ecosystem,” in 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering 
(SANER), 2017, pp. 407–411. 

[24] B. Motik, I. Horrocks, and U. Sattler, “Bridging the gap between OWL and relational databases,” Web Semant. Sci. Serv. 
Agents World Wide Web, vol. 7, no. 2, pp. 74–89, Apr. 2009. 

[25] M. Würsch, G. Reif, S. Demeyer, and H. C. Gall, “Fostering Synergies – How Semantic Web Technology could influence 
Software Repositories,” Scenario, pp. 45–48, 2010. 

[26] J. Rilling, R. Witte, P. Schuegerl, and P Charland, “Beyond Information Silos - An Omnipresent Approach to Software 
Evolution,” Int. J. Semant. Comput., vol. 02, no. 04, pp. 431–468, Dec. 2008. 

[27] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E. Hassan, “A Large-Scale Empirical Study of the Relationship 
between Build Technology and Build Maintenance,” Empir. Softw. Eng., vol. 20, no. 6, pp. 1587–1633, 2014. 

[28] I. Sonatype, Maven: The Definitive Guide. O’Reilly, 2008. 
[29] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Sci. Am., vol. 284, no. 5, pp. 34–43, May 2001. 
[30] M. Würsch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall, “SEON: a pyramid of ontologies for software evolution and its 

applications,” Computing, vol. 94, no. 11, pp. 857–885, Nov. 2012. 



25 
 

[31] B. Motik, A. Maedche, and R. Volz, “A Conceptual Modeling Approach for Semantics-Driven Enterprise Applications,” Move 
to Meaningful Internet Syst. 2002 CoopIS, DOA, ODBASE, vol. 2519, pp. 1082–1099, 2000. 

[32] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,” Int. J. Hum. Comput. Stud., vol. 43, 
no. 5–6, pp. 907–928, 1995. 

[33] N. Noy and D. McGuinness, “Ontology Development 101: A Guide to Creating Your First Ontology,” 2001. 
[34] P. E. van der Vet and N. J. I. Mars, “Bottom-up construction of ontologies,” IEEE Trans. Knowl. Data Eng., vol. 10, no. 4, pp. 

513–526, 1998. 
[35] M. Uschold and M. Gruninger, “Ontologies: principles, methods and applications,” Knowl. Eng. Rev., vol. 11, no. 02, p. 93, 

Jun. 1996. 
[36] S. S. Alqahtani, E. E. Eghan, and J. Rilling, “SE-GPS,” 2015. [Online]. Available: http://aseg.encs.concordia.ca/segps/. 

[Accessed: 05-Jan-2019]. 
[37] J. Williams and A. Dabirsiaghi, “The unfortunate reality of insecure libraries,” Asp. Secur. Inc, pp. 1–26, 2012. 
[38] B. Liu, L. Shi, Z. Cai, and M. Li, “Software Vulnerability Discovery Techniques: A Survey,” in 2012 Fourth International 

Conference on Multimedia Information Networking and Security, 2012, pp. 152–156. 
[39] A. Kimmig, S. Bach, M. Broecheler, B. Huang, and L. Getoor, “A short introduction to probabilistic soft logic,” in Proceedings 

of the NIPS Workshop on Probabilistic Programming: Foundations and Applications, 2012, pp. 1–4. 
[40] NIST, “National Vulnerability Database,” 2007. . 
[41] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht, “Self-organized reuse of software engineering knowledge supported by 

semantic wikis,” in Proceedings of the Workshop on Semantic Web Enabled Software Engineering (SWESE), 2005, p. 76. 
[42] Y. Zhang, J. Rilling, and V. Haarslev, “An Ontology-Based Approach to Software Comprehension - Reasoning about Security 

Concerns,” in 30th Annual International Computer Software and Applications Conference (COMPSAC’06), 2006, pp. 333–342. 
[43] B. Wouters, D. Deridder, and E. Van Paesschen, “The use of ontologies as a backbone for use case management,” in European 

Conference on Object-Oriented Programming (ECOOP 2000), Workshop: Objects and Classifications, a natural convergence, 
2000, vol. 182. 

[44] U. Nonnenmann and J. K. Eddy, “KITSS-a functional software testing system using a hybrid domain model,” in Proceedings 
Eighth Conference on Artificial Intelligence for Applications, 2003, pp. 136–142. 

[45] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, “Supporting online problem-solving communities with the 
semantic web,” in Proceedings of the 15th international conference on World Wide Web - WWW ’06, 2006, pp. 575–584. 

[46] H.-J. Happel, A. Korthaus, S. Seedorf, and P. Tomczyk, “KOntoR: An Ontology-enabled Approach to Software Reuse,” in In: 
Proc. Of The 18Th Int. Conf. On Software Engineering And Knowledge Engineering, 2006. 

[47] D. Jin and J. R. Cordy, “A Service Sharing Approach to Integrating Program Comprehension Tools,” in Proc. European 
Software Engineering Conference (ESEC) / ACM Symposium on the Foundations of Software Engineering (FSE) 2003 
Workshop on Tool Integration in System Development, 2003, pp. 73–78. 

[48] D. Hyland-Wood, D. Carrington, and S. Kaplan, “Toward a Software Maintenance Methodology using Semantic Web 
Techniques,” in 2006 Second International IEEE Workshop on Software Evolvability (SE’06), 2006, pp. 23–30. 

[49] M. F. Bertoa, A. Vallecillo, and F. García, “An Ontology for Software Measurement,” in Ontologies for Software Engineering 
and Software Technology, Springer Berlin Heidelberg, 2006, pp. 175–196. 

[50] R. Witte, Y. Zhang, and J. Rilling, “Empowering software maintainers with semantic web technologies,” Eur. Conf. Semant. 
Web Res. Appl., pp. 37–52, 2007. 

[51] L. Yu, J. Zhou, Y. Yi, P. Li, and Q. Wang, “Ontology Model-Based Static Analysis on Java Programs,” in 2008 32nd Annual 
IEEE International Computer Software and Applications Conference, 2008, pp. 92–99. 

[52] C. Kiefer, A. Bernstein, and J. Tappolet, “Mining Software Repositories with iSPAROL and a Software Evolution Ontology,” 
in Fourth International Workshop on Mining Software Repositories (MSR’07:ICSE Workshops 2007), 2007, pp. 10–10. 

[53] A. Iqbal, G. Tummarello, M. Hausenblas, and O.-E. Ureche, “LD2SD: linked data driven software development” in 
International Conference on Software Engineering & Knowledge Engineering, 2009. 

[54]   J. Olszewska and I. Allison (2018), "ODYSSEY: Software Development Life Cycle Ontology", in Proceedings of the 10th 
International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: 
KEOD, ISBN 978-989-758-330-8, pages 303-311. DOI: 10.5220/0006957703030311 

[55]  Y. Zhou, X. Yang, T. Chen, Z. Huang, X. Ma and H. C. Gall, "Boosting API Recommendation with Implicit Feedback," in 
IEEE Transactions on Software Engineering, doi: 10.1109/TSE.2021.3053111. 

[56] K. Thayer, S. E. Chasins, and A. J. Ko. 2021. A Theory of Robust API Knowledge. ACM Trans. Comput. Educ. 21, 1, Article 8 
(March 2021), 32 pages. DOI:https://doi.org/10.1145/3444945 

[57] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang and M. Zhou, "A Multi-Metric Ranking Approach for Library Migration 
Recommendations," 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2021, 
pp. 72-83, doi: 10.1109/SANER50967.2021.00016. 

[58] A. Schlutter and A. Vogelsang. 2020. Knowledge Extraction from Natural Language Requirements into a Semantic Relation 
Graph. In Proceedings of the IEEE/ACM 42nd Int. Conf. on Software Engineering Workshops (ICSEW'20). Association for 
Computing Machinery, New York, NY, USA, 373–379. DOI:https://doi.org/10.1145/3387940.3392162 

[59] Jiahong Zhou, Wei Chen, Chang Liu, Jiaxin Zhu, Guoquan Wu, and Jun Wei. 2020. DockerKG: A Knowledge Graph of 
Docker Artifacts. In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops 
(ICSEW'20). Association for Computing Machinery, New York, NY, USA, 367–372. 
DOI:https://doi.org/10.1145/3387940.3392161 

 


